
NBSIR 88-3776

The GRAMPS Operating System:
User's Guide

Peter Mansbach

US. DEPARTMENT OF COMMERCE
National Bureau of Standards
Center for Manufacturing Engineering
Robot Systems Division
Gaithersburg, MD 20899

and

Michael Shneier

Philips Laboratories
North American Philips Corporation
345 Scarborough Road
Briarcliff Manor, NY 10510

September 1988

US. DEPARTMENT OF COMMERCE
NATlONAL BUREAU OF STANDARDS

NBSIR 88-3776

THE GRAMPS OPERATING SYSTEM:
USER’S GUIDE

Peter Mansbach

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Center for Manufacturing Engineering
Robot Systems Division
Gaithersburg, MD 20899

and

Michael Shneier

Philips Laboratories
North American Philips Corporation
345 Scarborough Road
Briarcliff Manor, NY 10510

September 1988

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary
NATIONAL BUREAU OF STANDARDS, Ernes! Ambler, Director

The GRAMPS Operating System: User's Guide

Perer Mansbacht andMichael S h i e r '

Sensory-Interactive Robotics Group
National Bureau of Standards

Gaithersburg, MD 20899
Bldg. 22o/Rm. B-124

'Philips Laboratories
North American Philips Corporation

345 Scarborough Road
Briarcliff Manor, NY 10510

ABSTRACT

This guide describes the CRAMPS real-time multiprocessor operating system
from an applications viewpoint. It presents the information needed to use CRAMPS in
implementing distributed processing applications. Additional infomation needed by
an administrator to set up and maintain a specific application appears in the
Administrator's Guide.

April 15, 1988

The GRAMPS Operating System: User's Guide

Peter Mansbach' andMichael Shneier'
Sensory -Interactive Robotics Group

National Bureau of Standards

Gaithersburg, h4D 20899
Bldg. 22o/Rm.B-1%

l Philips Laboratories
North American Philips Corporation

345 Scarborough Road
Briarcliff Manor, NY 10510

System Overview

CRAMPS (for General Real-time Asynchronous Multi-Processor System) is a distributed operat-
ing system developed at the National Bureau of Standards [Rd. I]and designed to allow applications
involving multiple processors to be implemented easily. A typical system using CRAMPS will consist of
several processors (Motorola 680x0 in the current implementation'), a backplane (VMEbur), and a
number of memory boards, special-purpose peripherals, and VO ports. CRAMPS provides facilities for
passing information from one process to another, for sharing dynamically allocated memory among
processes, and for communicating with users and peripherals.

CRAMPS does not provide a development environment, although many debugging facilities have
been implemented. The applications must be programmed on a host computer (e.g.. a Sun) and be com-
piled, linked with the CRAMPS library, and downloaded (preferably using CRAMPS' downloader) onto
the target boards. Once downloaded, the programs wil l run stand-alone, and communicate with each
other and with the user.

CRAMPS is a true distributed operating system, in that each processor contains a part of the
operating system. Each processor can run by itself. in the absence of other processors, without risk of
failure, and processors can be downloaded and started in any order. with the same system characteristics
guaranteed to exist when the total system is running. In addition, each processor will contain code only
for those sections of the operating system that it actually uses, ensuring the least possible impact of the
operating system on the size of the code.

CRAMPS i s deliberately not a multi-tasking system. I t was felt that the ovexhead involved in task
switching was an undesirable burden. Also, the code for UO operations becomes much more complex
in a multi-tasking system, particularly when a communication my arrive while the task expecting it i s
not nmning, or worse yet, swapped out. Keeping these operations simple results in faster execution,
smaller code, andeasier modification by users.

In response to user requests, provision for simple task-switching, under user control, has been
added. A timer-initiated task switch i s also provided. I t is thus possible for the user to create a custom-
ized multi-tasking system.

Two protocols are provided for processes to communicate. The primary (and only necessary)
way is through "files".A file is an area of common memory. accessible to all the processes that wil l
use it,and known to them by a name, which is an ASCII string. A file is implemented as a common

Commercial products arc identifiedin order adequately to describe h e quipmenL In no u s e does suQ idmtificptbn
imply rcunnmenduion or endorsement by the National Buruu of slmdrrds. nor doer it imply that the equipment

identified i s ncccssady the best available for the purpose.

- 2 -

memory buffer, an ma of 6xed size and location.Its use, however, is more like a file on an ordinary
operaring system, such as U d , except that it only exists in (volatile) memory. A process can open a
file. write or read the information in it either randomly or sequentially, and close the file. The system
ensures that no two processes can write the same file at the same time (or one read while the other
writes).

Infomation i s passed from one process to another by writing it into the file, which must be read
by the other process. (Note that there is IK) Fequirement that the processes run on different processors.)
The system does not insist that something be written in the file before the reader can access it,so the
user must make sure that there is useful information available before reading. This i s usually done by
checking flags. The identity of the previous user of a file is always available (in the flag previous-user),
and i s upaated every time h e file i s oped. Thus. aftex writing data into a file, the identifier of the
writing process is associated with the file until some other process opens the 6le. eithez to read or to
write. I t is left to the implementor to decide whether or not processes should be allowed to overwrite
infonnation before it has been read, or to read information that was seen before. In appropriate
instances, both preventing and allowing these operations may be useful, and are easily accommodated.

The second way that processes may interact is through the use of dynamically allocated structures
in memory. GRAMPS includes two kinds of dynamic memory allocation. The first i s a purely local sys-
tem, internal to a process, in which memory may beallocatedin a private area, and is not aiccessible by
other processes. The second is a common memory allocation system, in which a process can allocate
memory, pass a pointer to the allocated area to other processes, and. eventually, free the memory. Each
process that receives a pointer to the information must free the area before the memory is retumed to
the free list. thus guaranteeing that structures will be available as long as any process has need of them.
Allocation and freeing are managed in a way similar to that used for links to files in Unix. A bit i s set
(normally by the allocating p m s s) for each process which will use an allocated area As each process
frees the area,itsbit is tumed off. When allbits are off, the area is finally retumed to the free list.

It is obviously necessary to pass the address of the dynamically allocated area to each of the
processes that will use it.This is done by means of a file, so that files are the more basic means of data
transfer. Once a process has read the address, it may =cess the structure, modify it,and pass it on to
other processes. mere is not as much protection for these struchues as there is for files, in that there i s
no attempt to prevent multiple writers or readers from simultaneously accessing the same structure. I f
this i s a problem, a dummy file can be set up, which must be opened or closed before accessing the
structure. Th is provides the same protection for a dynamically allocated structure as is given to nonnal
files. Note that this is considered an implementation -leveldecision, rather than being part of the operat-
ing system.

In addition to communicating with other processes, access i s provided to whatever serial ports
may be available to the processor. These ports may be written and read as if they were files.Standard
input and output files are provided by the system, and usually bound to the terminal port When special
peripherals are available, it is necessary to write simple drivers that either use fixed memory locations
for communication, or that have their own processors to interact with the system.

The rest of this document provides a guide to using the system for the general user. It explains
how to create and run a process, and describes tools which may be used in debugging it. Examples of
simple programs m given to illustrate some of the concepts. Appendix A gives a list of the CRAMPS
functions of interest to the user. together with brief descriptions of what they do. Appendix B is a list -
ing of the heade-r file v b h , which must be Pinclude'd in user programs which access CRAMPS facili-
ties. Appendix C is a complete list of all the functions currently in the CRAMPS library.This is
arranged by source file, and i s intended for use by an advanced programmer or system administrator
needing further insight into the workings of the operating system. It is suggested that the casual user
skip this section. Appendix D describes the local development environment at the National Bureau of
Standards, and Appendix E describes the environment at Philips Laboratories, andlocalmodifications to
GRAMPS.

Unix i s mdanartc of AT&T Bell I~bontories

- 3 -

The companion document Administrator's Guide, [Ref 21 is intended for a system administrator.
It explains how to set up common memory files and dynamic-memory free lists, and explains in some
detail what happens during system initialization. The general user who simply wants to implement an
application need not read that document.

User's Guide
A user of CRAMPS wil l typically want to run one or more processes in a stand-alone system.

Usually, the processes will communicate with each other, and will run asynchronously (although syn-
chronous operation is supported). This section describes how to write applications that make use of the
CRAMPS primitives to develop such systems. For most operations, there are several different ways of
achieving the Same effect, In these cases, a prefened method will be described, and the options men-
tioned. In some cases, reference will be made to Appendix A without further elaboration. ?he follow-
ing assumes the reader is familiar with the syntax of the C programming language.

An application to be run under CRAMPS must be manually broken into separate processes, since
CRAMPS does not perform dynamic process allocation. Each process is coded as a separate program, in
the usual way, with each process having a main program and whatever subroutines are needed. When
processes need to communicate with each other, or with the outside world, CRAMPS function calls are
used in the place of the analogous run-time library routines or operating system calls. For many such
calls, the usual C syntax may be used (e.g., read, write). For two processes to communicate, it is
necessary to set up one or more files. The programmers of the processes need only agree on a conven-
tional file name (an ASCII string) that both will use to refer to each file, and use that name in opening
the file '. Th is name should be given to the system administrator, together with an estimate of the
maximum size (in bytes) of a single transaction. The system administrator will assign a common
memory area for the file, and set up the appropriate initialization so that communication can be esta-
blished.

Information about each of the GRAMPS files, including location and size, is stored in a disk file
on the host computer, alongside the user's source code files.This file is given an extension of ".cm" by
convention (for "common memory"). This file must be includedin the main program of each applica-
tion process (using #include). The system administrator will supply this file, and keep it up to date.
Usually, the filename i s the same as the process name (for example, a process called p l will have a
main file called p1.c. and a #include file called pl.cm). A special "cm" directory will be established,
where all the included files will be kept, so for the example above, the statement necessary to bring in
the information about the files used by p l would be

#include <pl.cm>

The ".cm" files contain information that enables the process to find the common memory loca-
tions associated with each file name, and ensures that initializations happen in an orderly way. I t
should not be necessary to examine these files, but an example of one is given in the section for system
adminisuators, together with explanations ofall the entries.

Note that the file parameters may be overridden at nm time, in that a special system process
called SYS creates a system-wide list of files which are used in preference to the "xm" enhies. Th is
assures that each process i s using the same, current, file data. The "xm" enaies sue primarily for use in
debugging, when the SYS process may not be present.

Usually, a process running stand-alone will take the form of an endless loop, rather than running
to a conclusion. Given the overhead of downloading a program, it is usually not cost-effective to exe-
cute a single operation on multiple processors. Thus, programs take a common fonn of polling their
inputs, operating when they receive information, writing Out their results, and repeating the process.
Obviously, there can be many variations on this formula, but a common thread is the use of polling.
CRAMPS as currently implemented does not support intermpt-drivenYO.

In fa* the name does not have to be rhe IMC for the two processes, IO lmg as the rynan aimininntor is told th t

the nxmes refer 10 tbe same file. For simplicity. however, i~is cmvmtiad to use the same name for .U ac(nses to the
rune file.

- 4 -

Line 2

Line 3

Line 4

Line 6

Lines 8-9

Line 10

Line 12

The main features of the CRAMPS operating system will be introduced here by means of exam-
ples. Three annotated programs follow, two dealing with passing information by means of files, and one
that makes use of the dynamic memory allocation capabilities. Included in the annotations are descrip
tions both of the CRAMPS system calls actually used in the programs, and alternatives that may be
more appropriate in some situations. A listing of user-callable functions, with brief descriptions,
appears in Appendix A. Both of the examples have been implemented and tested, using a pair of essen-
tially identical programs, communicating with each other. Where several calls are available to perform
similar or identical functions, the preferred version is noted. A convention throughout what follows is to
use italics to describe variables and boldface for CRAMPS functions and C keywords.

Figure 1 shows a simple program for a process, P1, that writes data to a file, reads from another
file, and prints what i t read to the terminal. An analysis of this program will give a flavor of how
CRAMPS programs are written. I t i s fruitful to study the program as a whole before reading the annota-
tions. Note that, for the program to run properly, a second process.P2, wil l also need to be running.
The second program in this case can be exactly the Same as this one, except that i t writes the file read
by this program, and reads the one written by this progmn.
Line 1 pl.cm contains information about the files and dynamic memory allocation areas

specific to this process. I t includes a structure (thefles saucture) that has an entry for
each file giving its name, the address where its flags are stored for opening and clos-
ing the file, and the address and size of its data area. I t should be included only
once, in the main program. pl.cm is shown inFigure 1 in the Adminisrrutors Guide.

vbus.h contains structure definitions, external CRAMPS function declarations, and
defined constants that may be useful to the user process. It also contains typedefs for
ADDR (char l used as a pointer), STR (char * used specifically as a pointer to a
string), uchar, uint, dong (unsigned char, int. and long, respectively), and
USRBITS (32-bit longword used as a set of user bit vectors). vbus.h may be
linclude'd in any file that makes use of its definitions. A listing is included in
Appendix B.

NTRIES i s a number indicating how many times to attempt to open a file before
declaring i t busy. This will be discussed in more defail below.

user i s simply the name the programmer has given to the process (P1or P2 for this
example). This name must be given to the system adminisaator, and will be used as
an identifier allowing processes to know who last used each file. User identifiers are
one-byte numbers (P1is actually #define'd to be 0x01, in this case).

This is the beginning of the program. As required in C. the main program i s called
main. Note that there are no arguments to main. Since there is nowhere to pass
arguments h m , there i s no way to give values to the conventional argc, argv, env.

f i n andfdour are file descriptors for the two files. They can &e values of -1, in the
case of an emr rem from a file operation, FILEBUSY (defined in vbus.h to be -2).
in the c ~ s eof trying to =cess a file c m n t l y in use by another process, or a small
positive number, when a file i s open. They correspond almost exactly to the file
descriptors usually available in C. b&in is simply an m y that will be used to store
the data read fbm the input file.

l h i s is the start of a neverending loop.The program will execute the contents of this
loop until a fatal e m occurs. or the system is intempted or reset by a user or
another process. Most real-time programs will have such aloop.
This is the first call to a GRAMPS function, Bagpeek. Bagpeek returns the current
value of the open/closed flag far the given filename. This flag consists of two bytes,
one containing the status (open or closed) of the file, the other containing the ID of
the current user (if open) or the previous user (if closed). CLOSEDTOYOU is a
mnemonic tdefine'd in vbus.h. The while statement will loop in a null loop as long
as YOU (this user) is the most recent user of the file. When any other user uses the
file, the condition will no longer be met, and control will pass to the next statement.

- 5 -

1

1 #include <plcm> P the common memory map for this p c e s s *I
2 #Include cvbusb P the CRAMPS header 6le *I
3 #define "TRIES 500 P number of tries to open file *I
4 extern unsigned inturn;P this process's ID, defined by the systrm *I
5
6 maln0
7 (
8 intfdin.fiuc P filedescripfor input and output *I
9 char 6&in[201; P buffer for reading *I
10 for(;;) r loopforma *I
11 (
12 while(Ragpeek("sendmp2")=CLOSEDTOYOU) ;
13 fdwt = openn("sendtop2". W, NTRZES);
14 SWltchyaOuf)
15 (
16 case-1: /+errorinopen*/
17 abort("ERR0R m opening sendtop2\n");
18 c p ~ eFILEBUSY: r i~open to otha p-Ss */
19 prlntf("sendtop2 busy againb");
20 brenk:
21
22
23 prIntf(''bad write to %");

25 abort("can't close sendtop%");

27 fdin = o p e n n - w i t h g ~ v l o u r (" g c ~ ~ p 2 " .R, NTRIES. PZ);
28 swftch(@n)

default: P file is now open to P1*I
U(Writf@&ut. "1234567890 ". 11) != 11)

24 u (C l 0 s e ~ W) = -1)

26 1

29 (
30 c p ~ e-1: r-1 in open *I

case FILEBUSY P file is open to other process *I
31 abort("mor m opening g&mph ");
32
33 prlatf("getftomp2 busyln");
34 brepk,
35
36 P there are new data m the file */
37
38 prlntf("bdread from getfromp2W);
39 else printf("6uf-b = %sW&U/ _in));
40 if(close(fdin) = -1)
41 abort("can't close getfmmp2W');
42
43 1
4 4 1

default: P file is now open to P1*I

U(rendyiiin, b@-in, 11) != 11)

Figure 1.

It is preferable to use flagpeek to determine the previous-user flag, rather than
repeatedly opening and closing the file. This is because opening and closing the file
may interfere with another user trying to gain access, delaying him and possibly lock-
ing him out entirely. Atso, opening the file causes this user's ID to be put in the
previous-user flag, and the current time to be entered in the flag buffer, giving an
incorrect picture of the status of the file to other users who may require this informa-
tion, and to the debugging tools.

- 6 -

Line 13 openn i s the basic file opening command. used here to open the file named "send-
topT for writing. I t takes three arguments, the first of which is the file name, a
string. The second is an int, which may be either (kt) 'W for read/write privileges,
or (int) 'R' for read-only privileges. The names W and R have been Pdefine'd to be
(int) 'W and (int) 'R', respectively, in the header file vbus.b (Appendix B). (A char
argument would not be portable and would leadto inconsistencies with Unix System
V.) Note also that this argument is not a suing, i.e., W (with doublequotes) would
NOT be correct.

In any case, the second argument is meaningful only for multiple -reuder files. A
multiple-reader file is one that may be simultaneously accessed by several read-only
users. Only one user may write the file at a time, however, and no other users may
have access to the file during a write operation. The W argument will cause new users
to be shut out while waiting until all current users have finished with the 6le. and
only then allowing the file to be opened for writing. (Changing a single #define in
GRAMPS allows multiple-reader files to be treated as ordinary files, if this i s desired.)
The third argument to openn is the number of times the function will attempt to
access a busy i i le before returning FILEBUSY. When this function is executed, it
looks for a file in the files array with the given name. If it does not exist, or if the
associated flags have been corrupted. openn r e m s -1. Otherwise, the file may
already be open to another process, in which case openn tries up to NTRIES times
before returning FILEBUSY. (If " R E Sis 0, it will continue trying as long as
necessary.) Usually, only a small number of tries should be needed to open a file.
unless some process is not behaving properly. If neither of these cases i s found, the
i i le will be opened, the identifier of the current process will be stored with the file as
its cment user, and a small integer will be returned as the value of the function call.
The file will now be available for use by this processor. The following function caIls
are variations on this basic theme.
openn-fd(fd, Mtflugs, nrries) provides a much faster access to the file, by avoiding
the need to look up the file name each time. I t can only be used after the file descrip-
tor. fd, has been established,which reguires at least one call to openn, one of the
other open calls, or get-fd (see Appendix A and Example 3). By obtaining the file
descriptors for each file before the forever loop, the calls within the loop can be made
more efficient.

open(filenmne, Mlpags) i s included for compatibility with Unix. I t will a m p t to
open the li le given by the string f l e m , but wil l keep trying if the file is busy
(equivalent to openn@lenume, nUpags, 0)). The nVpags argument may take the pre-
&tined values W or R (see openn above), or the Unix System V values 0-WRONLY,
0-RDWR, or 0-RDONLY.

open-synch(filename. Mlpags) i s used when processes want to use synchronous com-
munications. It wil l wait for the next tick on a system clock before opening the 6le.
(This function will retry as long as necessary. since in normal usage di f femt users
will access the 6le on different offsets from the clock tick.) 'Ihe ticks on the clock are
defined as being a given offset from a given multiple of the basic system clock (see
Appendix A). The offset and multiple are contained in the global variables
synchr - he and synchr-incr, which may be set by the user.
openn - w i th - p rev iou r~~ ,nvfl08s. nrries, previous-user) insists that a particular
user was the last to use the file. Often, two processes use a file, but each process i s
only interested in reading what the other one wrote. This call can be used instead of
flagpeek to ensure that the file is not continually being opened by the process that
wrote the last data, only to be closed again immediately. The use of this call i s illus-
trated in line 27 of the program in Figure 1. Note that a&initialization a writer of the
file will be permitted to openn-withgrevious -user even though there i s no previous
user.

- 7 -

Line 14

Lines 16-17

Lines 18-20

Line 21

Lines 22-23

openn-with-otheruser(fd, nvpOgs, ntries) is similar. In this case the process waits
until my user ID other than this user’s appears in the flag. As soon as this happens,
the file i s opened.
There are three possible outcomes of an open call. The switch statement starting on
this line accounts for each of them.
Ifthe open call resulted in an emr, something is very wmng with the system. In thisprogram. the abort system call i s used to print a message and stop the process. Note
that this i s very drastic. A system with a supervisor might want to send an error mes-
sage, try again, or request to be reset and restarted. Here the mult willbe that a trace
of the functions called by the process will be printed on the terminal (if one i s
attached to the processor), and the program will stop. The exit call is an alternative.
I t does not print a message before stopping the process. If given an argument, exit
wil l print a stack trace before calling stop, which halts the program.
If FILEBUSY i s retumed, the file is currently being used by another process. That is.
each time an attempt was made to open the file, i t was found to be open to another
processor (up to NTRIES times). Often this means that something is wrong with the
other process,but this is not a fatal error, so a message is printed to the terminal, and
the process continues. printf behaves exactly as it would in normal C implementa -
tions, except that it is specially written to check whether or not a terminal i s attached
to a processor. If there are many terminal output statements in a program (e.g., for
debugging), the program will not run in real time, and the debugging may be invalid.
Simply by disconnecting the terminal line from the board, however, it i s possible to
run at (almost) the normal speed. As soon as the terminal i s reconnected, the message
will reappear. This is sometimes the only way of determining why certain failures

If neither of the first two c a w has occmed, then the file has been opened success-
fully. (Note that we determined in line 12 that this process was not the last user of
the file. Clearly this process has not used it since. Thus it i s st i l l not the last user,
and no further examination of the flag i s necessary. I t is worth noting, however, that
had we needed to know specifically that a particular user was the last user, i t would
NOT have been sufficient to have perfonned the flagpeek, since a different user may
have opened the file after the fiagpeek but before this user’s openn. In this case a
lastuserVa) is required, once the file has been opened.) Since another user has opened
(and since closed) the file, the previous data have presumably been read, so new
infoxmation can be written. T h s , line 22 is executed. In this program, nothing i s
written until the old data have been read. Th is i s not, however, enforced by the
operating system. Many applications, such as real-time’sensing, are better off
overwriting old data before it is read, to ensure that the receiving process always has
up-to-daIe infomation.

The wri te call actually copies the data out to the file. I t is analogous to the usual C
write, and retums the number of characters wriuen. Hence. the check for the number
of characters. and the message if something goes wrong. As with open, there are a
number of variations on the wri te command.
writeran(fd, byffer, counf, ofser) performs a random-access write, to an address flser
bytes from the beginning of the file. Note that there is no seek command (although
one could easily be implemented).

OCCUT.

writepointer(fiZen, wronguser. pointer) (formerly called writeheader) i s used
when a single address pointer is to be passed to another process. It waits until some
process other than wronguser was the previous usef of the file, and then writes the
address (in pointer) to the file. I t does not need a prior open call, mr a following
close. A common use is to create a structure containing pointers to all the dynami-
cally allocatedareas to be passed to another process. The address of this structure i s

- 8 -

Lines 24-25

Line 27

Lines 2842

Line 10

Line 11

passed to the other process, which can then access all the areas.
autowritefifenome, bfler, count) performs an opena on the file, writes the data in
byffer to it,and closes the file. I t is similar to writepointer. except that it writes an
arbitrary length buffer. Figure 2 showsitsuse.
After a file is opened, no other user can gain assuntil it has been closed. The
close call changes the semaphore associated with the file to indicate that the file i s
available. The previous-user flag i s not changed, it continues to show the process that
last opened the file, and that is now closing it.Note that for the e m (-1) and the
FILEBUSY cases in the switch statement. the file was not successfully opened, so
should not be closed. A call to close in these cases will FeSult in an m r message.
An m r in closing, signalled by a rtnrmed value of -1, is serious when the file was
successfully opened. In this program, it will result in stopping the process with a mes-
sage and a stack trace.
Having hished with the write part of the program (whether or not it was successful),
the next step i s to read data from process F'2, using the file called "getfromp2". As
described above, the openn~withgrevious~usercall is used to ensure that P2 has
actually written new information to the file before the file i s opened.. The file i s
opened only for d n g in this case, and " ' R E S attempts will be made to open
before FILEBUSY will be retumed.

Just as in the previous open, there are three possible outcomes of the open call. The
switch statement i s analogous to the one described above, except for the default case
(lines 3541). If the file i s successfully opened, it i s guaranteed that P2 was the pre-
vious user, so no special check need be done. The read statement i s the same as the
usual C statement. returning the number of characters read Usually, the number of
characters to read i s known. I t is possible, however, to keep on reading until no char-
acters are received (or less than were asked for). This is not an error, unlike writing
fewer characters than requested. A serious error will return -1. As for the wr i te com-
mand, there are variations on the read.

readranvd, bMer, count. ofset) is analogous to writeran.

readpointerfilenume, wronguser) (formerly called readheader) is analogous to wri-
tepointer (except that readpointer returns asits value the pointer read from the file).
The declaration of readpointer as a function returning a pointer to characters appears
in vbus.h. An example of the use of readpointer is illusuated in Figure 3.
autoreadvilenume. bger, counr) is analogous to autowrite. I t opens the file, reads
the specified number of bytes, and closes the file.

Lines 40-41 Once again, the close statement makes the file available to other users, and is only
used on a successfully opened file.

The above example can be programmed more succinctly using autoread and autowrite. Th is is

. Lina 6-7 Note that we no longer need the file descriptors. This bookkeeping is taken care of by
autoread/autowrite. The variable nchars i s introduced here only to show that these
functions return a value, the number of characters read/written. nchurs is not used in
this Program -

As in line 12 of Figure 1, this line causes the process to loop, waitinguntil someone
else uses the file.

This line replaces lines 13-26 of Figure 1. Most of the functions done explicitly in
Figure 1 are performed by the CRAMPS functions autoread and autowrite. An m r
in opening the file willresult in a diagnostic message and exit from the program, with
a stack trace. The same holds for errors in read, write, or close. Thus, there is no
return of -1 possible. FILEBUSY conditions will result in looping within the auto
subroutine, until the file is closed. This contrasts with the case in Figure 1, where

shown in Figure 2, which is the same basic program as in Figure 1.

- 9 -

Line 12

Line 14

1 tiaclude <pl.crn>P the common manory map for this process +/
2 #include-bush> P the CRAMPS header file */
3 extern unsigned iat user;
4 main0
S (
6 Intnchurs;
7 char bUf_in[20]; p buffer for reading */
8 for(:;)
9 (
10 whUe(flagpeek("sendtop2")=CLOSEDTOYOU)) ;
11 nchurs = autowrite("sCnatopz","1234567890".11);
12 whUe(flagpeek("getEromp2")!= CLOSFLAC(P2)) ;
13 p now there .renew data m the tile */
14 nchurs = autoread("ge.tfromp2".b~-it1.11);
15 printf("buf-in = %sW.b~&in);
16 I
17 1

P number of characters read or wrim */

Ploopforever *I

Figure 2.

after NTRIES attempts at opening the file, control is returned to the user's program.
The advantage here is that the user need not con- himself with programming to
handle error conditions. Of course, the processor is halted on an error condition,
which may sometimes be a disadvantage.

This line i s analogous to line 10. Whereas there we waited for any flag other than
CLOSEDTOYOU, here we insist on a specific flag, closed-to-P2. CLOSF'LAG(arg)
i s a preprocessor macro, defined in vbw.h. which constructs the flag meaning "closed

Analogous to line 11. Th is l ine and the next replace lines 2742 of Figure 1, but not
exactly. openn-with-previous-wr guarantees that if the file is opened, the previous
user will have been the one requested. Here. the while loop guarantees the Same
thing, but a different user may have opened the file after the flagpeek but before the
open. Thus a different user would in fact be the previous one. For files which are
used by only two processes, as here, this cannot happen.

The above examples have illustrated many of the functions used to pass infomation between
processes using files, or fixed, named, regions of common memory. The next example expands further
on some of these melhods, and introduces the use of shared, dynamically allocated memory. Here, one
process allocates a region of memory, and passes pointexs to the region to one or more other processes.
Each of the processes makes use of the region as if i t were part of itslocalmemory. Processes may
read and write at will. Usually, this can be managed so that there are no conflicts. If conflicts are
hazardous, semaphores can be used for dynamically allocated memory, in the same way as for ordrnary
files,but the resulting slowing of access may make it more practical to copy the data to each process
that will use it.

As processes finish with dynamically allocated regions, they must explicitly Eree them. The
memory is not, however, returned to the free list until the last processor that has access to i t has
finished with it. Each processor to which the address is to be passed must be named in the call to the
dynamic memory allocator, or added to or deleted from the list of eligible users at some later time.
These requirements are elaborated below.

Figure 3 shows a progmn for a process, P1, that allocates common memory for a structure, opens
a file, and passes the address of the common memory to another process, P2. P1 then reads a pointer
to dynamically allocated memory from P2, frees the memory for both regions, and exits. While this is

to mg".

- 10-

not a useful program, i t illustrates the mechanics of the dynamic memory allocation and freeing pro-
cess. Once again, the program should be read as a whole before the annotations are studied.

1 #includecpl.ccm>r the common memory map for this process */
2 Mefine "RES 500 /+ number of tries lo open file *I
3 extern unsigned int user;
4 main0
S (
6 Latfdout, P li le descriptor for output */
7 char *mymem, *histnun; P pointers to memory for P1 and F2 */
8 fdou! = pt-fd("dmp2"); r get the file descriptor for output */
9 mymem = nlloccm(20. PlBlT IF2BIT);
10 U(mympm=NULL)
11 sbort("can't allocate common memory for mymemh");
12 strcpy(mymm. "message f o r m ") ; P insat message in allocated area */
13 f&ut = openn-fd(fdolrt, W. NTRIES);
14 dtch(tZout)
15 (
16 c=-1: P C I T M ~ O ~ * /
17 rbort("ERR0R in opening sendtop;?ul ");
18 case FILEBUSY P fileis open to another process */
19 printf("sendtop2 busyh");
20 break:
21 default: r ble i s now open to P1 */
22 u(lastuser(fdou) I=user)
23 (
24 u(writeyaou,&my~PTRsIzE)I=PTRSIZE)
25 printf("bad mire to P2L.1");
26 1
27
28 if(closO(fd0ut) = -1)
29 abort("can't close SendtopM);
3 0 1
31 U(freecm(mymem) < 0)
32 abort("cmot free common memory for PlW);
33 hismem = readpolnter("getfromp2",Pl);
34 if(histnun=NuLL)
35 abort("could not readpointer from P");
36 prlatf("message from p2: % s h " ~ m p m) :
37 U(freecm(hismcm) < 0)
38 rbort("can'tfree common memory for p2\n");
39 -0;
4 0 1

else prlntf("thisusa stil l is previous used);

Figure 3.

Lines 1-5
Lines 6-7

Line 8

These are the same as for the program inFigure 1.
Here the variables used in the program are declared. Only one file descriptor is
needed, and there are two pointers. The pointers will be used to address the areas in
common memory. mymem will be allmed by this process, and Sent to P2. while
hismem willbe allocatedby P2, and read by P1.
get-fd finds the file descriptor associated with the given file name, and r e m s it for
later use. Making use of the lile descriptor and the calls openn-fd and flagpeek-fd
ensures that file accesses will be substantially faster than using the filename and
openn (etc.) directly.

- 11 -

Line 9

Lines 10.11

Line 12

Line 13

Lines 14-30

Lines 31-32

Lines 33-35

dloccm i s the statement that allocates an area in common memory. The command
here is toall& 20 bytes of common memory, to be used by processes P1 and P2.
PIBIT and =BIT are defined in crcrtom.h. within vbur.h. The alloccm call returns a
pointer to the start of the available space (a char *), which may be coerced to other
types of pointers as necessary. Note that Werent processes allocate space in different
areas within common memory, so that it is possible for one process to run out of
space while others sti l l have adequate space. The syam administrator can reassign
these areas if necessary.

I f there is some problem with allocating memory, or if there is no more memory
available, the allocem call returns NULL. This can be used as a signal for the user's
program to free memory that i s no longer needed. Here, the program prints a mes-
sage and halts.
The pointer returned by thealloccmcall can be us6d exactly like any other pointer in
the system. Here, a string i s copied into the area. to be read by P2.
Having found the file descriptor by calling get-fd, the openn-fd call can now be
used to open the file. This works exactly the same as the openn call descni in the
first example. I t i s faster because it does not have to look up the file descriptor that
corresponds to the file name. The same three results can occur after making the call
as for the openn command in Example 1.
The switch statement accounts for the three values returned from the open. There are
no differences between this code and that described in Figure 1 except in the default
case. Here, the pointer is written out to the file "sendmp2". Note that the value of
mymm is written out to P2, by passing the address of mymem to write. as in Unix.
Note that P2 needs to know where in memory P l allocated the space,and this is the
vulue of mymm. (and not, for example its address). As in Example 1, the file i s
closed after writing, to make it available to P2.
Mter finishing with dynamically allocated memory, it is necessary to rem it to the
free list. The freecm command is the usual way of doing this. freecm removes the
process from the list of legal users of the location, and, if there are no remaining
legal users, returns the memory to the free l is t for re-use.Usually it i s a serious error
for freecm to return a negative value. Either an invalid address has been given as an
argument, or the free list has been cormpted, or the memory has already been freed.
Here, the process is halted if an error occurs. More robust systems would have to deal
with the problem in some other way.

A more general form of freecm is addusers. addusers@oinfer, Oddvec, subvec)
rakes a pointer to a common memory location, a vector of users to be added as hav-
ing legal access to the location, and a vector to be removed from 8ccess to the loca-
tion. addusers is used when the set of originally assigned users is to be modified.
For example, alloccm always assumes that the allomor will be a user of the area.
Often, one process simply creates and initializes an area, and then passes it to anotherprocess. without further use. The fust process can remove itself from consideration as
a user by calling freecm or addusers immediately after the location is allocated.
Another use is when a process needs to pass a pointer to a third process unknown to
the process that allocated the memory. The inteamediate process would need to add
the third process to the list of legal users before passing the pointer, or there would
be a risk that the memory would be freed before it was claimed by that process.
Note that when no more users have a claim to the memory addusers teturns the area
to the free list just like freecm, and the area can thereafter be reallocated at any time.

Having written the address of the area allocated by P1, the example program shows
one way of reading a similar address allocated by another process. in this case P2.
readpointer was discussed above, and is used here to return the value of a winter.
(readpointer is declared to be a function retuming (char *) in vblcs.h.) The file used

- 12 -

for reading is "gedrompT, which is only read after P1 i s NOT the last user. That is,
the file flags are checkeduntil some process other than P1 was the previous user. and
a number of bytes equal to the length of an address is read and returned. If there is a
problem with the read. readpointer returns NULL, which i s used here to abort the
process. Note hat the above line 6. and most of lines 13 to 30 could have been
replaced by a single writepointer dl, which writes an address to a given file, as
described above.

Line 36 Having read the pointer h m P2, P1 may now use it for its own purposes, just l ike
any other pointer. Here, the message i s simply pinted to the teaninal.

Lines 37-38 When the memory is no longer needed, it must be returned to the free list through the
freecm call.

Line 39 The stop statement causes an immediate halt of the program.

I t should be pointed out that there are two types of dynamic allocation and freeing in the
CRAMPS system. In addition to the common memory handling describd above, local.non-shared
memory can also be dynamically allocated.This is done using the usual C malloc and free calls.
Memory will be allocated and freed in the same way as for common memory, but will only be accessi -
ble to the process that created it (and possibly other processes that run on the same processor). Even
though the addresses of localpointers can be passed to other processes (as can any value), attempts to
access these addresses will result in reaching areas within the localmemory of the receiving process,
rather than of the ~ . O C ~ S Sthat sent the pointer. This i s usually disastrous.

In addition to these functions, there are a number of misceLlaneous calls that have not yet been
described, They can be divided into functions for W n g with files.for communicating with a termi-nal. and for accessing registers and memory locations. There are also system calls for pmess switching
and synchronization. These are described briefly below.

Three system functions are provided for checking the flags associated with a file, without disturb-
ing them, and without preventing other processes from accessing the files, as discussed earlier. The
three calls are flagpeek(fi1enume). flagpeek-fd(fd), and.lastuser(fQ. The first of these returns the
Uagword associated with the given file when given the file name, the second r e m s the flagword when
given the file descriptor (which i s faster), while the third returns only the byte containing the user ID of
the previous user, and it too requires the file descriptor argument. The flagwords consist of two bytes,
one containing the identifier of the previous user of the file (which may be the current user if the file i s
open). The second byte is used to detennine if the file is OPEN or CLOSED. Successive calls to
flagpeek or tlagpeek-fd may give different values if the files are in use.

Note that the decomposition of the flagword into the two bytes i s machine dependent. I t is there-
fore recommended that this be done using the following preprocessor macros. which are defined in
vbur.h. FLAGBYTE(flagword) selects the OPENKLOSED byte, and PREWSER@qpvord) selects
the previous-mer byte. Also OPENFLAG(userid) constructs the flagword that means 'OPEN to
userid'. and similarly CLOSFLAG(urerid) for 'CLOSED to usen&.

Some of the functions that deal with teaminal interaction have already been mentioned. In addi-
tion to the usual printf, scanf, getchar, putchar, etc., there is a function that reads h m the tenninal
up to, and including the next newline. and returns the characters in a buffer. readnl(dummy, bfler,
count) behaves like a normal read, except that i t always reads a complete line of text from the terminal.
Another useful function for terminal input is called ifchar0 . This simply checks to see if something
has been typed at the terminal. If not, 0 is returned. If so, the character is returned, however the char-
acter also remains in the buffer until read by a getchar. (getchar, by comparison. does notrem at all
until a charactex has been typed.) Note that ifchar will detect a cul-C, and stop the process. Finally,
there is a call, testcrto , that checks to see if a terminal.isconnected to the board. If so, it retums non-
zero. This i s useful in cases when timing iscritical.The call is used in printf to ensure that processing
i s done only when there is something to receive the message to be printed.

There i s also a class of calls that deals with timing in the system. Some of these assume that
there i s a clock available, so may not work inall cases. sleep(n) is used to wait some specified number
of milliseconds (approximately) before doing some action. sleep does not require a system clock; i t

- 13 -

obtains its delay by executing do-nothing loops. (The remaining timing functions do require a system
clock.) wait-until(t) waits until thespecifiedtime, then returns the current time. If it iscalled when the
given time has already passed, it returns immediately. wait-to-multiple(t. dt) waits until the time is a
multiple of dr, after t, and then returns the current time. These cal ls can be used to simulate synchro -
nous communications (see eg. open-synch), or to ensure that an action, such as taking a picture,
occurs at a given time. systimeo m u m s the system time (a common memory countex incremented
using a clock intenupt). imaliveo sets a location in the current process’s PROC array (see below) to
the current system time, so that anoihex (supervisory) process can know the current process is still run-
ning. imalive also returns the current time.

A number of functions 811:provided for accessing registers and memory locations directly. These
are useful when interacting with special devices. peek(nddr) returns the long word (32 bits) at the
address addr. which must be even (this restriction is imposed by the hardware), while peekb(addr)
fetches the single byte at the address addr (even or odd). Similarly, regpeek(regis?er) returns the long
word value in the specified register. Registers are specified as follows (for the Motorola 680x0). Argu-
ments are integers, from 0 to 15. with 0 corresponding to do, 1 to dl, etc., h g h 7 to dZ then 8
corresponds to a0. 9 to al, etc., thtough 15 to u7. There i s no command to modify registers at present.
In analogy to the peek commands, there are poke commands. pokel(d.fr, longword) copies the value
longword (32 bits) to the given address d.fr. which must be even. pokew(uddr, word) does the same
for word length dam (16 bits), and pokeb(&, byte) copies a byte (8 bits) to any given address uddr
(even or odd).

Other commands can be used to copy data rapidly (using the Imp mode of the 68010). or to zem
blocks of memory. movblk(source, destiwtion, count) moves c o w bytes (count e 65536) from source
to destination. The source and destination must not overlap. movblkfast(source, destination. count) i s
similar but faster, requiring .that the addresses be even, and the count be a multiple of four.
movbigfast(s0wce. destitution, bigcounf) has the same restrictions. except that bigcount i s a long word,
so up to four gigabytes can be moved. To zero a block of memory, use zeroblk(&ress, count) where
count is the number of bytes (e 65536) to be set to zero. starting at d r e s s .

A large number of CRAMPS debugging tools are available. Some of these are automatically
invoked by the programs, such as the stack trace on exit. while others may be explicitly requested to
helplocateprogramming errors. These are described in the following section.

Debugging Tools

Before discussing explicitly invoked debugging tools, we call attention to the design criterion that
whenever the system detects an error, it writes a message to the terminal (if there is one). 'Ibis mes-
sage includes the name of the subroutine that detected the e m r and a brief description of the emr.
This practice can save the programmer from having to code print statements at each place where a -1
error r e m can occur. (The system printout can be suppressed at any time,’if desired. by setting the
global variable sysdebug to m.)These messages may be fintha augmented by setting bit 1 of the
PROC array’s debugpug (see Selection 6 below). This bit causes a stack trace to be generated and
printed with every system message.

Once a program is debugged, it can be made much smaller by re=g it to a CRAMPS library
that has been created with the #include DEBUG switch (in vbush) removed- Th is removes many of the
run-time checks and associated e m message texts.

Another execution time debug feature is the “system subroutine trace” facility. For every major
system function entered, a line is printed giving the name and arguments of the function. Th is feature
is invoked by setting bit 0 of the debu&g byte in the user board’s PROC array (see below). Already
mentioned are the stack traces which are automatically printed whenever abort or exit (with a non-zero
argument) isded.

The explicitly invoked tools are self-guiding and menu driven. tools is actually a standalone pro-
gram (a C main program) which i s created and downloaded by CRAMPS alongside the user’s main
program, but is never called by any part of the user’s program. I t uses a separate stack, and bypasses
the monitor’s register save area, in order not to desrroy any infomation about the user’s program under

- 14 -

test.
The CRAMPS initialization message includes a reminder to "type XG for tools" when in the

GRAMPS monitor. Without this monitor, do a GO to location 21040 (hex), or find the location of the
tools subroutine, and do a GO toit.

The main tods menu then appears, as shown in Figure 4. These menu choices are elaborated on
in the following paragraphs.

CR -menu

2 - display currat stack
3 - display system flags
4 - display user's *6les' may
5,s - symbl table (addresses, or examine/change)

6 - set debug flags
7 - climinate/restore subroutines
8 - display this user's PROC structure
g -resumeprogram
x -restartprogram
e - execute subroutine

1.t - Stack ea~e

'E -exit
(Note - celc will c l o b h the register save area)

Enter menu selection (CR for menu):

Figure 4.

Menu Selection 1 (or "t") presents a stack trace, the chain of nested function (subroutine) calls,
most recent first. The addresses are obtained from the stack, which must not have been changed since
the program was stopped. These are convened to the ASCII function names using the symbol table,
which is downloaded by the download p r o w at the same time as the code. The very last calls listed
by the trace should be main, main, and -main. vmain and -main are CRAMPS initialization mu-
tines,and main is the user's main program. A stack trace run before starting the program i s not mean-

Selection 2 displays the contents of the stack itself,or at least of the most recent 256 bytes. Note
that the "top" of the stack, its most m n t entries, are a! the top of the display; however, these are the
lowest stack addresses. The stack grows downwards, lrom higher addresses to lower.

ingful.

Selection 3 is particularly useful. This shows the current state of the system file flags, i.e. which
files are open and to whom, which have been closed and when (if the system clock has been running),
and who last did a "peekflag". If a parameter file ("pannfile ") has been created by the system. then all
files will be listed (use control-S/control -Q to stop/start the output). Otherwise, only those files known
to the process, i.e. appearing in its.cm file, are listed.

The user's internal files m y is l isted with Selection 4. 'Ibis shows rhis user's (the user executing
tools) own idea of the state of the file. Be careful, however, since some of this information has a
slightly different meaning here than in selection 3, and moreover i s updated only when the user
attempts to open the file. Thus the open/closed flag tells only whether the file is open to rhis user,not
whether it's open to any orhr wr. Also, the previous-user flag refers to the previous user at the time
this user last opened the file, and not the cwrent user. In particular, if the file i s open to this user, it i s
still the previour user that appears.

- 15 -

The symbol table, Selection 5, or "s", i s probably the most important of the tools. Of course, a
symbol table must have been downloaded along with the program. The symbol table is in a special
compact format, having been created from the compiler's output by a CRAMPS formam program bin-
map. The Administrator has probably put acall to this program into the shell fileI("link.locate. and
format"), so that i t is created automatically.

On entering Selection 5. another menu appears. shown in Figure 5. Note that one may rem to
the main took menu at any time by typing control-T (for &ools). or directly to the monitor by typing
C U N ~ B .

Enta a globalsymbolname.,or an*ss, or CR for menu.
To examine or modify a variable, mteritssymbol or address followed
by %spec. where %spec i s one of the following printf spacibcations:

%d mt (outputindecimal)
%id long (decimal)
%x int (hex)
%lx long (hex)
%c char(ASCII)
%cx c h a r h x)

%&s pointer to string (ASCII)
%f float
%If double
%m memory display (256 bytes)
'Koa array or structure (display sizcof(anay) bytes)

8 s shing(AsclI)

You may also enter CI'RL-T tonm to the Took menu,
or Cl'RL-E to Exit directly to the monitor.

Enter a globalsymbolname, or m address (or CR for menu):

Figure 5.

The simplest function is just symbol table lookup. Enter a symbol name, followed by carriage
retum, and the program responds by printing "address = ". followed by the address. Conversely, enter
an address (a hexadecimal number up to 8 digits), and the program prints the name of the global sym-
bol at that address. If there i s no symbol with that address, the closest symbol with a laver address i s
printed. Thus. if an address within a function is given, the name of that function i s printed.

To examine ot modify a global variable, it is oniy necessary to enta its name or its address as
above, followed by a printf specification (intervening blanks are permitted). For example, to print the
long (32-bit) integer variable war inhexadecimal,one would enter

The specification is required because the symbol table dbes not store information on the nature of the
variable: itssize, or the interpretation of its bits (integer, string, floating point). The speciiications listed
in Figure 5 are accepted. Most of these mean the same here as in printf, and are thus self-explanatory.
A few deserve special mention.

The 9& specification, as in printf, prints the character value of the addressed byte. The character
"A" prints as "A". But a non-printing character like &nml-G is, well, non-printing. The %x has been
added to print the two-digithexadecimal value of the addressed byte. Note that hardware constraints of
the 680d.l cause an exception (trap) if a word or long specification i s requested at an odd address, so it

- 16 -

is necessary to use %cx for byte values.
A tougher distinction needs to be made between %s and %&s. 96s is used when the address

given, or the address of the symbol given, is the address of the first character of the string. For instance
if nume is declared by char name[Sl= "ABCD, then the entry nume 96s would get the respne "value
= "ABCD"". But when the address or symbol given is that of a pointer to the string. the other
specification %&s needs to be used. Thus if we define char *pointer-to-name, and we set
pointer-to-name = nume then the entry pointer-to-nume 8 s gives garbage, but pointer-to-name %&s
again gives "value = "ABCD"". This is because the object at address M~VZ(=BrnameIO])i s the fitst
character of the string, while the object at &pinter_to_Mme is not a character at all but another
pointer, to the actual string. In practice one may try both specs.

Finally the specifications %m and 9ba have been added to deal with arrays, structures, and general
memory dumps. %m gets a dump of 256 bytes starling at the given address or symbol.Similarly, %a
gives a dump, but to the end of the amy or structure. This end is determined from the symbol table by
scanning for the next higher addressed symbol. If the symbol and the next higher symbol are not
contiguous-perhaps thm are compiler-generated constants in between, for example, or a structure i s
aligned to a word boundary-- this algorithm will yield extra dump. For %m and %a specs, no
modification of the variables i s allowed. But one can find the address of, say, a structure element of
interest, and then modify i t usingitsnumerical address and another of the specs.

Following the "value = display just described, the program will prompt with "New value:". Con-
tinuing the example above ("var%lx"), the computer might respond with

value = 1A549D. New value:

A carriage r e m entered in response means "Make no change". Otherwise, enter the desired new value
in the sum forma implied by the printf specification just entered (hexadecimal.in this example).

Only global symbols are recognized. Function names are inherently global. Variable names
declared outside any function are also global (and thus anything referenced as extern i s also). But vari-
ables declared within a function are automatic; these appear and reappar in various places on the
stack, and are not included in the current symbol table.

Returning to the main menu (Figure 4). item 6 allows the user to view and change the debugPag
byte in the PROC amy. (See Selection 8 for a discussion of the PROC array.) The system currently
recognizes bit 0 ("system subroutine trace": print name and arguments on entry to the major system
functions) and bit 1 (print stack trace along with system error messages). Of the remaining bits, bits 2
and 3 should be reserved for future CRAMPS debug tools, while bits 4 through 7 are available for user
use, for example to control the user's own debug printouts. The global variable -debugffag i s set to the
PROC amy's debugPug at program s m and occasionally thereafter (currently at each call to dprintf').
"bere are two other ways to change the debu&g byte. One i s "by hand", using the monitor on any
board (since the PROC amy is in common memory). The other way is by giving an argument "-dxx"
to thedownloader,where xx is the desired value (in hex) of debugpCrg.

Selection 7, eliminate or restore subroutines (functions), is often a quick way to determine which
function is the site of a bug. It will request the name of the function, and whether to eliminate or
restore it.Elimination involves placing a refurn-from-subroutine command as the first command to be
executed; restoring is simply restoring the link A6 with which i t started. All C programs compiled with
the Intennetrics conlpiler, most CRAMPS assembly-language subroutines, and very likely many other
compilers' functions start with link A6. The tools program wiU not eliminate anything not beginning
withlinkA6.

Selection 8 displays the user's PROC structure (itsentry in the PROC array) in a readable
fashion. The PROC array is an array of structures, one for each processor, which resides in common
memory (at E X 0 0 in the N B S vision system). The address of a process's entry in the PROC amy i s
saved onits own board at location THISPROC, at 20600 hex (in the current NBS implementation), and
in the global variable thisproc (declared as struct PROC *) which is available to the user's program
and thus is also in the symbol table. The PROC structure itself is defined in vbus.h (Appendix B). I t i s

32 bytes long, and includes the-user ID, program status (initializing. running, or aborted), the debugPag
described in Selection 6 above, the user’s time (see imaliveo), program start address, location of data
segment. and PROM entries. The PROM entries wi l l not be meaningful when used with other than
CRAMPS PROMS. Examining the entire PROC amy (i.e. for all processes) may be useful in geaing a
snapshot of the whole system.

Finally, singlecharacter codes allow various ways of exiting tools. Control -E will exit to the
monitor from anyplace where input is expected, without writing into the register save area (Control-C,
available in the user’s program, will rewrite the save area, thereby destroying data reganling the pro-
gram under test, and should not be used from tools.) g will goto (resume at) the place the user’s pro-
gram was last stopped. I t i s not recommended to use g if the user’s program was never started. x will
restart the user’s main program (including the GRAMPS prologue) from the beginning. e will prompt
for the name of a subroutine to be executed, invoke the subroutine, and return to tools. This is currently
implemented only for subroutines with no arguments.

- 18 -

Appendix A

This appendix lists the functions in the CRAMPS library which are intended for use by user
processes, with brief descriptions, taken where possible from the function code itself.Additional func-
tions for system use are listed in Appendix C. Functions whose names are identical to the usual C
functions have the usual C arguments also (open, close, read, write.a).

Argument types, and types returned by functions, are (16bit) int except where otherwise noted.
Types uint and dong are unsigned int and unsigned long, mpectively; ADDR is char l and
USRBITS is unsigned long. (These are defined in vbus.h)

Functions of the CRAMPS system that open or close files:
open(frlename, nVpags) STR filename; Open a file. If file i s busy, keep trying. Equivalent to
openn(frlenome, nvpaSs, 0). The second argument is used only for multiple-reader files: in other cases it
must be present, but its value is irrelevant. An ((int) 'W') as the second argument means write
privilege is being requested; the Unix System V symbols 0-WRONLY and 0-RDWR are also recognized
as write requests. Any other value gets read-only. The symbols W and R are defined in vbus.h to have
the appropriate values. Note: "w" (the string) is NOT a valid write argument. This call is compatible
with Unix.
opean(lilename. nvpoSs, ntries) STRfilename; uint ntries; Try to open a file nfries times (if busy). I f
there's an error, return(-1) immediately. If file is sti l l busy after ntries tries, print a message and
return(FILEBUSY) (FDLEBUSY == -2). nfries == 0 means keep trying until open. The second argu-
ment nvjags, i s the same as for open. openn is preferable to open in finished systems, where a pro-
gram which blocks indefinitely i s not acceptable. The condition in which a file is busy for an unexpect -
edly long time requires corrective action by the affected process. However, for systems in a develop-
ment phase open is generally quicker to code (since there is no FILEBUSY return path), and is Unix-
compatible for easier testing.

openn-with-previous_user(filename, nVpags, ntries. previous-user) STR filename; Open a file, but
wait until previous user is previous-user.

openn-with-otheruser~leMme, nvflags, ntries) STR filename; Open a file, but wait until
previous-user is other than this user.

openn-fd@f, nvPags. nrries) uint ntries; Open a file. given its file descriptor (index into files array).
This should be much faster than openn.

open-synch(filenome, nvflugs) STR jilename; Wait until system clock i s a multiple of synchr-incr
offset from synchr - he. then open. This provides for synchronous communication, if desired. The vari-
ables synchr-incr and synchr-base are extern unsigned int and extern unsigned long, respectively,
and may be changed by the user.

close(fd) Close the file with file descriptor fd.
Bagpeekfilename) STR jilename; Read the flag of the specified file without changing it.

flagpeek-fdva) Same, given the file-descriptor. Faster.

lastuserva) Returns the previous-user flag obtained from the system file flags. If the file is currently
open to you, r e m s the user previous to you. (May need get-fd. below.)
get-fd(,hlename) STR jilename; Get the file-descriptor of the named file. In CRAMPS. the filedescriptor
i s pennanently associated with a named file, so this is meaningful even for an unopened file.

The following preprocessor macros are provided (in vbush) in order to insure portability of
operations which form or decompose flagwords. This decomposition depends on the order in which
bytes are concatenated to form words, which i s different on an 8086 processor than on a 680x0, for
example.
FLACBYTE(t2ugword) selects the byte that contains the OPENKLOSE information.

PREWSER(pagword) selects the byte that contains the previous user's ID.

- 19 -

OPENFLAG(usen'G) constructs a flag word that says 'OPEN to userid'.

CLOSFLAG(userid) constructs a flag word that says 'CLOSED to urerid'.

Read, write, and their analogs:

autoread@fename, bger. count) STR filename; ADDR bger;
autowritefilename. buffer, cow) STR flename; ADDR b@er; These two functions perfom their own
open and close.
readvd, bger, count) ADDR blsffer,
writevd. beer, cow) ADDR beer,
readranvd, b@er. counf. ofset) ADDR beer, long Mser; Direct access read ('readrandom') - read
data starting offset bytes from the beginning of the Ele.

wr i teran@ bger, cow, offset) ADDR bgec long oflser.

ADDR readpointer(fi1enwne. wronguser) (formerly called readheader) STR filename; char wronguser;
Check that someone OTHER than wrongllser has usedflename then read and return pointer (ADDR).
writepointer(li1em. wronguser, pointer) (formerly called writeheader) STR filename; char
wrongusec ADDR pointer; Check that a user other than wronguser has used previous pointer, then
write new pointer.

Initialization:

main0 Automatically called at startup by -main, to initialize the CRAMPS system. Should never be
call4 by user.
filinito Reset flags of all files owned or currently accessed by this processor. This function i s automati -
cally called at startup, by main. For any flag which is initialized, the remaining 14 bytes of the
system's flagbuf are zeroed, and the entire file is zeroed also. Should never be called by the user.

Dynamic common-memory allocation programs:

Note the distinct names: malloc and free are the C-library routines that get space on the user's own
board for its internal use; alloccm and freecm get space in common memory, which is accessible to
other users.

ADDR alloccm(size, uservec) uint size; USRBITS uservec; Get a block of common memory. of the
requested size (bytes). Return a pointer to it (ADDR). uservec i s the bitwise OR of all userbits who
will get use of this block.
freecrnvp) ADDR p; Return a block of common memory to the free l i s t freecm removes your ukbit
from the uservec; only if you are the last user does the block actually get rahed to the free list.

addusersvp. addvec. subvec) ADDR fp; USRBITS addvec, subvec; Update the bit vector of a block of
memory by adding the bits in admtec, and removing those in subvec (which may include the current
user himsew.

Terminal YO:
printf(comol,urgs, ...) STR control; The usual C print-to-terminal function. However, printing i s
skipped if no terminal is present.

readnl(dummy. bger, count) ADDR buffer; Read from terminal to (and including) the next newline.
Theretdcount includes the newline (as on Wnir).
getchar0 rems(char). VO primitive for reading from the terminal. Actually r e m s an int with high-
order byte 0. Control-C will cause the p m s s to stop (by calling stop) as soon as it i s read in, i.e. at
the next getchar, putchar, or ifchar).

putchar(char); UO primitive for writing to the terminal. Control-S and control-Q may be used during
output to turn transmission off and back on, respectively. (The program will block - pause - during this
time.) Control-C will Cause the process to stop @y calling stop) as soon as it is read in, i.e. at the next

- 20 -

getchar, putchar, or ifchar).
getcho returns(char). getch i s like getchar, but does not echo the character to the terminal.
ifchar0 retums(char). Returns 0 if no character is waiting to be read from the terminal. Otherwise,
returns the character but &sn't 'use it up': the next call to getchar will r e m the same character.
Normally used to see whether a character is waiting, ifyou don't want to block (hang); getchar will
block if there is no character (as in Unix).
testcrto testcrt is a subroutine to test if a device (presumably a CRT) i s hooked up to the UART port.
Retums nonzero if a device i s there. 0 if not.

Stop and related functions:

exit(i) stop, and print a stack trace if iis non-zero.

abortwt, args) STRfmt; Stop. and print 'ABORT' and the specified message "frm",filling in the args
as in printf. Provide a stack trace.
stop0 This i s the simplest way to exit the program when something goes wrong, without doing a retum
to noplace.

Timer functions:

systimeo retums0ongword). Returns system time.

ha l i ve0 returns system time(long). Sets user time to systime to show SYS that this process is still
alive.

sleep(n) n is approximately in milliseconds.
ulong wait-until(t) ulong t; Wait until the specifiedtime, then return current time (unsigned long). If
it's past the specified time, rem immediately.

ulong wait-to-multipIe(t, d) ulong t; uint dc Wait until time is a multiple of dt offset from t, then
return current time (unsigned long).

Moves, peeks, etc:
movblk(sowceaddr, destaddr, bytecount); ADDR sowceada?. destaddr; uint bytecount: does a block
move (source and destination buffers must not overlap).
movblkfPst(sowceaddr, &st&, bytecount); ADDR sowceaddr. destaddr; uint bytecount: movblkfast
is similar to movblk, but addresses MUST be even, and count MUST be a multiple of 4. There i s NO
checking. Count must be less than 65535.
movbigfast(sowceaddr, &st&, bytecount); ADDR sowceaddr, destaddr. ulong bytecount; movbig-
fast is like movblkfast, except count is a long (up to 4 M). As in movblkfast, addresses MUST be
even, and count MUST be a multiple of 4. "here is NO checking.

zeroblk(&st&, 6ytecount); ADDR &st&; uint bytecount; zeroblk zeroes a block of memory.

peek(addtess): ADDR address; returns(longw0rd); Fetches the longword at location address. address
must be even (except 68020).

peekb(address); ADDR address; retums(byte); Fetches the byte at location address. Note that peek
cannot be slipped in in place of peekb, since the desired byte is returned at the other end of the long-
word return register.
pokel(address, longword); ADDR address; long longword; Stores a longword at location address.
address must be even (except 68020).
pokew(address, word); ADDR address; uint word; Stores a word at location address.

pokeb(address, byte); ADDR address; char byte; Stores a byte at location address.

regpeek(register); int register; returns(l0ng); Returns contents of register (0-7 gets d0-d7; 8-15 gets a0-
a7).

- 21 -

Miscellaneous functions:

setcurrpic(n) uint n; Set the cunpic field of the PROC array (see Appendix B) to n.

changeproc(userid) uint userid; Change process identity (to userid) (but still on same processor).

STR index(c. s) char c; char *s; Return a pointer to the first Occurrence of c in string s; or NULL if
none.
char makeprint@) char c; Mask out the parity bit of the character argument c. If c is a printing char-
acter, returnit;if c is non-printing, return *.*instead.

Debugging toots directly callable by user:

tools0 A standalone program that may be entered directly h m the monitor. Tools provides debugging
tools for understanding the current state of the user’s pogram. It takes care not to clobber the user’s
stack or register save area. The tools themselves m listed on andselectedfrom a menu, q.v. f igure 4.

traceall0 Print stack uace of the currently running program. This version i s calledby exit or abort,
and so ends with a call to stop0.

trace0 Print stack trace of a stopped program. Uses saved-A6, in the register save area.
dispmem(addr, n) ADDR oddr, Display n bytes of memory.

checkstack0 Checks the current stack pointer to see if the stack i s infringing on program space. I f less
than 4k bytes remain, the program aborts.

Multi-tasking functions:
relinquish0 - issue a trapIto voluntarily return control to the scheduler. Th is is the only user-callable
multi-tasking function. Those functions callable from the (applicationdependent) scheduler are listed in
Appendix C.

- 22 -

Appendix B - listing of vbush and vbuscustomh

P *bush itself has those delinitions which should not change */
P fnnn one installation to the =XI. Things which may change am kept m */
P<vbuscustom.h>. which is tlnclude'd automatically by*/
P vbvsrl A few &hitions m the system headcr file may also *I
P change; these are listed also. at the end of this Appendix. */

P Related header files: vbysgsl, vbvspcvml */

P .on6les may rlso have some #define's. md m e va&bks */
P defined. vbvr l includes rcmnms of stdwk; DO NOT */
P include chat 6le too. */

tifndef VBUSJXYI'-HJN

P #define MULTITASKING 1

P typedefs */

typedefunsignedchar uchru;
typedefunsignedmt ulnt;
typedefunsignedmt u16
typedef unsigned long ulong;

typedefunsignedlong USRBITS;
typedef char l ADDR;
typedef char * STR;

P define only if we haven't defined before */

P say vbus.h has been included already */

P include this #define for multi-tasking */

typedef s m c t alloheader * p-alloheader;

struct PROC (P PROC (process) array on INTFbard*/
ulnt userwec P each byte has the value 'user' */
uint stofus; P 0x1111 user program

0x2222 GRAMPS initialization
Ox9999 tasksuspended
O X A B A B aborted
O X A O A B intermpted(NMI)

*I
tifdef MULTITASKING

#else

#endif

struct context *coturn,

USRBITS Uspmask

Ulnt cmpk;
char reserv~4J;

P intermpt/reset flag */

ulong time;
ADDR start;
ADDR d o ;

-23-

The filobuf smcture is intunal to the user's program.
It contains the location of the named me. who owns it d
who are the othm usas. and this program's idea of whether it
has the 6le open md if 80,who used it previously. The
system, of course. uses only the 'official' status which is
maintained in common memory. m the 'f lagWs.

*/

struct Elebuf (
char fJcMmc[l6];

P one structure for eech ble */

char statrrr; /* open or closed (this flag i s internal topgram*I
uchar previous-user; P obtained from flagaddr when file is upcncd */
USRBITS othenwrs. P Each bit i s a user.Bit 31 6et means this is the owner */

r (owner i s responsible for resetting uninitiaIized flags at startup) */
P T h i s user must NOT be among otherusers */

uchar multiple; P TNC says more than one reader at a time may BCWS file */
uchar wunitpogs; P bit 0 says i f msg printed, bit 1if uninitialized */
uchar spcrcr[8]; P filebuf should l ine up, i.e. be a multiple of 16 bytcs */

struct flagbuf *fig&; P *I
ADDR buff&, P stmting address of file *I
ADDR cndaddr, P last valid address plus OM */
ADDR next; P address of next read or vnite position */
1;

struct flagbuf (

uchar opdag;
uchar cwuser;

/* this lies in common memory */

uint openthe; P time file was last opened (low-ordupart) */
uint clostime; /* time file was last closed */
uint peeker; P time flag was last peeked at */
USRBITS rduserc P bit vector of users currently rcadiig file */

USRBITS writcrcg; P bit vector of user (if my) wanting (or */
P (for multi-reader files only) */

P having) write permission. */

P for allocation blacks: +/

struct slloheader (
p-allobeader nexrfree;P pointer to (header of) next free block */

p-alloheader hruprt; P pointer to (header of) next block (~IW or allocated) */
ulong bize; P the number of bytcs in this block, includingheader */
USRBITS husmc; P bit vector pointing to users of this block of memory */

P (for allocated blocks, points toitself)*I

1;

struct IDstruct (
uint id;
STR m,
1;

- 24 -

r basic #define's useful to users as well 8s system */

#define NULL ((ADDR) 0)
#define EOF (-1)

Xdef ineTRUE 1
MefineFALSE 0

#define LOBYTE OxoOFF
#define KIBYTE OxFFOO

#define OPEN Ox80 /+ bit 7 set. 'Ibis value is necessary inorder
to be able to use h e 68000's 'TAS' instruction */

#define CLOSED 0
#define FILEBUSY -2
#define U"lT 2 P do not have another user with this ID */P why not ??? */

#define FLAGBYTEOPagword) (Wgword) >> 8)
#define PREVUSERVlagword) (Vpagword) 8c UIBYTE)

#define OPF,NFLAG(rrrerid) ((werid) I (OPEN cc 8))
#define CLOSFLAG(rrrerid) ((merid) I (CLOSED cc 8))

#define OPENTOYOU
#define CLOSEDTOYOU

(OPENFLAG(llser))
(CLOSFLAG(Mer))

#define R
#define W
#define 0-RDONLY 0
#define 0-WROFkY .1
#define 0-RDWR 2

((int) 'R' /"' read only (used in open, etc) */
((int) 'W' P read-write (used in open, etc) */

/* System V flags used in 'open' */

p defines used m userids */

#define ALLBITS 0x7-
#define OWNERBIT Ox80000000
#define INTIBIT Ox80000000 /* used in opendoccm */

P standard C file definitions: */

#define stdin 0
#define stdout 1
#define stden 1

P alternate definitions for allocation functions */

#define free@) cfree@)
#define mdkr(n) esUoc(1.n)

crternulong peek(). peeklo, systimeo, impliveo, regpeeko;
extern char peekb();
a m nADDR slloccmO. readpointer(). caUoc(), fgets();
extern double atof();

#UnderMAIN
externstruct IDstruct _weridrfl;

-25-

uternstrud filebuf *fdw, P the 'files'm a y is defined in *.an*/
YendU /* md m d e f MAIN*I

#include cvbuscustom.h> P see below *I

/+ vbuscw0m.h */

. .
p cvbrcscrcsfom.h> has the #define's and initializations that may vary

from one site to another */

P major system-wide parametas *I

#define SYSTEM 1 P NBS " l a b system. Mostly affects choice of

#define FLAGBASE 0x400000 P s m of system's copy of wmmon-memory I/O f lags */
#define FLLEBASE Ox401000 /* start of file (buffer) space */
#define ALLOBASE Ox46oooO P start of allocation area */

camera parametas */

#define M 0 P M=l' for MULTIPLE -reader files, M=O for no */

#define MAXFILES 20 P max # of files available to this process */
#define MAXPROCS 32 P man # of processors. This should never exceed

#define THISPROC Ox20600 Plocation of pointer to this process's

#define DEF-SYNCHR-BASE OP defauls for synchronous I./O */
#define DEF-SYNCHR-INCR 28 P clock ticks, milliseconds (approx) *I

32, because we run out of userbits *I

PROC structure. Set by PROM. */

P usex id's: */

#define K"I'Ox66 P used to be 0. x66 is better, because flags won't

#define U N S E T Ox55 P used in files.previous _user. which may be initialized

#define NONE OxEE P used inuserids table below */

power up with that value */

lo INIT. or totally UNSET */

#define FSV 0x10
#define SSVA Ox2A
tde6neMLDI Ox31
#define SYS Ox%

I+ user bit numh: */ P (these an the indices, i.e. the number of bits
to be shifted: usermask = 1L ccuserbitn)*/

#define FSVN 0
#define SSVAN 1
#define MLDIN 3
#define SYSN 14

P user bit masks */ P (these are the 16-bit masks. used for testing *I
P (userbit = 1L cc USERN) */

#define FSVBIT 1

- 26 -

Ydeline SSVABlT 2
#define MLDIBlT 8
#deEne SYSBIT 0x4000

YUdef MAIN
struct IDstruct -ureridr[MAxpROCS] = (

P arranged so that -useridr[wrbitn].id =user */
P Le., given a userbimumber n, the user id */
P is just -userids[n].id */

FSV. "FSV".
SSVA. "SSVA",
NONE, "",
MLDI, "MLDI-,

NONE, *". NONE, "", NONE,
NONE. "". NONE, "", NONE,

NONE. "".
NONE, '''lv

SYS. "SYS".
NONE. ,141

NONE. "", NONE. '"I. NONE,
NONE. "". NONE, "". NONE,
NONE. "", NONE, "", NONE,
NONE, 'I", NONE, "", NONE,

"", NONE,
"", NONE,"". NONE,
'"I, NONE.

"I,..,,*

#Under SOUP P The following is actually used only in SUP */
ADDR -dlJUees.P dummy. */
#endif

lfendif /* end #Udef MAIN */

P from vbussys.h */

pI-----------INSTALLATION -DEPENDENT CONSTANTS ----------------*/

OtdeEae AI.-50 P Max numb of files in entire system

#define "IMEOUT 20000 P max number of reeies (opening a file) before printing warning */
(= allfiles m y size) */

P #define MULTlPLE P CQmmentCd out means don't include.

Irdeline SYSDEBUG Pperfm run-time checks */
multiple-reader Eleprotocol*/

#define USTART (ADDR)0x21000 P enmy point to (CRAMPS pmlogue to) user's program */
#define UBASE (struct baseblock *) USTART P start o f user's baseblock,q.v. */
Odefine SYM-TAB-ADDR-SLOT (sbuct symbol **) (UBA.!iE->symbol_tabre_addr)

P location of the symboltable address */

- 27 -

#define BOARDTOP ((ADDR) OxAOWO) P highest address on board, plus 1*I
Wefine USERSTACK BOARDTOP P top of us-stack space */
#define ZEROFROM (ADDR)0x90000 P m o stack from hac up to current stack pointer */

Mesne SGO ((long.)Ox2022A) P ddress of the address saved by */
P stop(). in monitor's lave ma. */
r Printed out by fraceo.*I

#define USRBUF ((ADDR) MO22E) P "save area'' - monitor's list of */
I+ register contents as of the last stop0 */
P or breakpoint */

#define regA6 regpeek(l4) P frame pointer register */
#define saved-A6 peekl(USRBUF + 14*4) P frame pointer register (in save area)*/
#define savcd-A7 peeklWSRBUF + W 4) r stack pointer register (in save area)*/
#define GO7 ((ADDR) Ox9BC) p admess in monitor of end of 'G'

command *I

- 28 -

Appendix C
n i s appendix lists all the functions included in the CRAMPS library, under the source code file

in which they appear. for use by the advanced user. Again, brief descriptions are taken where possible
from the function code itself.Argument types, and types retuned by functions, are (16-bit) int except
where otherwise noted. As before, types uint and dong are unsigned int and unsigned long, respec-
tively; ADDR is char l and USRBITS is unsigned long. (These are dedned in vbus.h)

Indented function names are intended only for system use.
For system administrators and maintainers. the CRAMPS file names are given below. The source

i s often very useful in understanding the behavior of the functions. The names of the files derive from
the VMEbus implementation. There used to be two separate versions, one for the VMEbus. and one for
the Multibus (called mbus). Later, the two were merged, but the names were not changed..

<<< vbusar >>>
vbusac contains those functions of the GRAh4PS system that open or close 'files'.

openCflename, w a g s) STR filename; Open a file. If file i s busy, keep trying. Equivalent to
openn(frlename, Mugs, 0). The second argument is used only for multiple-reader files: in other cases it
must be present. but its value is irrelevant. An ((int) 'W') as the second argument means write
privilege is being requested; the Unix System V symbols 0-WRONLY and 0-RDWR are also recognized
as write requests. Any other value gets readmly. symbols W and R are defined in vbus.h to have
the appropriate values. (The explicit cast to int is not required when using the lntermetrics cross-
compiler, but this is compilerdependent.) Note: "w" (the string) i s NOT a valid write argument. The
Unix System V flags 0-RDONLY, 0-WRONLY, and 0-RDWR are recognized, and this call i s compa-
tible with Unix.
openn@lename, twflugs. ntries. fd-arg) STR filename; uint ntries; Try to open a file ntries times (if
busy). If there's an error. return(-1) immediately. If file is stil l busy after ntries tries, print a message
and return(FILEBUSY) (FILEBUSY = -2). nnies == 0 means keep hying until open. The second
argument, TWpL1gs. i s the same as for open. fd-arg is used only iffifenume =0. It should be the value
returned by a previous get-fd or successful open call. openn is preferable to open in finished systems,
where a program which blocks indefinitely i s not acceptable. The condition in which a file i s busy for
an unexpectedly long time requires corrective action by the affected process. However, for systems in a
development phase open is generally quicker to code (since there is no FILEBUSY return path), and is
Unixcompatiile for testing on a Unix host system.

openn((ADDR) 0, Mipags, ntries,fd) uint ntries; If the filename argument i s 0. then a fourth argument
is present (used with opennfd).

openn-withgrevious -~r(frlenome, nVpags, ntries. previous-user) STR filename; Open a file, but
wait until the previous-user flag is previous-user.

openn_with_otheruser(frleMme, nVpags, nnies) STR filename; Open a file, but wait until the
prevwus-user flag is other than this user.

opennJd(fd, nVpags, ntries) uint ntries; Open a file, given its file descriptor (index into 6les amy).
This should be much faster than openn.

open-synch(filename. Mlpaes) STR filename; Wait until system clock is a multiple of synchr-incr
offset from Jynchr -he. then open. Th is provides for synchronous cpnmunicaticm, if desired. The vari-
ables synchr-incr and synchr - he are extern unsigned int and extern unsigned long, respectively,
and may be changed by the user.

openr(fr1enmne. DUMMY) STR filename; open or retum(-2) if busy. Use openn(fr1ename. R, 1).

openw(filenamc, ntries) STR filename; uint ntries; Open for writing (applies to "multiple-reader"
[simultaneous access] files). Use opennfilename, W. m'es). (openr and openw have been retained
for compatibility with existing programs.)

(for system use:)

- 29 -

openonce(frlenume, rwflugs. nfries. fd-urg) STR filenamc; Open or return (return -2 (FILEBUSY)
if busy). nfries is vestigkd; it used to be used for multiple-reader files. fd-urg is used only if
filename =0.
-open@) struct lilebuf *p; System open.

-openwait@, ntries) struct filebuf *p; uint ntries Keep trying to -open.
-openw@, ntries) struct filebuf *p; uint ntries, Open for writing.

close(fd) Close the file with file descriptorfd.

(for system use:)
-released@) struct filebuf *p; Free a driple -reader file of this user's read and wxite bits.

-close@) struct filebuf *p;

Bagpeek(filenume) STRl;lename;Read the flag of the specified file without changing it.

flagpeek-fd(fd) Same, given the file-descriptor. Faster.
lastuservd) Returns the previous-user obtained from the system file flags. If the file i s currently open to
you, retums the user previous to you. (May need get-fd. below.)

get-fd(filennme) STR flenume; Get the file-descriptor of the named file. In CRAMPS, the file-descriptor
is permanently associated with a named file, so this is meaningful even for an unopened file.

The following preprocessor macros are provided (in vbus.h) in order to insure portability of
operations which form or decompose flagwords. This decomposition depends on the order in which
bytes are concatenated to form words, which is different on an 8086 processor than on a 680xU. for
example.
FLAGBYTE(pagword) selects the byte that contains the OPENKLOSE information.

PREWSER(pagword) selects the byte that contains the previous user's ID.
OPENFLAG(userid) constructs a flag word that says 'OPEN to userid'.

CLOSFLAG(userid) constructs a flag word that says 'CLOSED to userid'.

(for system use:)

struct filebuf *getfptr(frlename) STR filename; Given a filename, return a pointer into the 'files'
m y .

e<< vbusb.c >>>
This file contains the file initialization functions.

filinito Reset flags of all files owned or currently accessed by this processor. This function MUST be
called by everyone at startup (and is called automatically in main). Current version zeroes.all files
whose flags are reset by this p m s s (other than parmfile). zeroing the files should make for easier
debugging. If any flag is initialized,the remaining 14 bytes of the system's flagbuf are zeroed also.

(for system use:)

multinit(p,flug) struct filebuf *p; uintflug; Called by filinit to initialize a multiple-reader file.

initopen(&,Ng) ADDR dc-uintpas;~etm1 for successful open, o not successf~l.
zerofile@) struct lilebuf *p; Zen> file pointed to by p and its flagbuf, unless it's punrJiZe or
dloc*n.
getpardo Locate pm@le in common memory, and rem a pointer to it if it's there. Wait for
i t if so instructed.

getallfileso Get pmq'ile and generate a 'files'array. For now, just read it all in into temporary
(automatic) area. Later can screw around looking into file directly.

cpyfile@. a) struct filebur *p; struct alwebuf *a; Copy a file's info h m the 'allfiles' m y to a

amongf(id. bits) ucbar id, USRBITS bits; I s the userid id among those listed in bits? id is a
userid like SSVA (Ox2A); bits is OR'd fromuserbitslikeSSVABlT (1 <e SSVAN, or 0x0002).

<<< vbusc.c >>>
vbusc.c contains CRQMPS functions other than 'file' VO, including printf, read0, writel.

(for system use:)
STR libdate0 Get CRAMPS date-of-last-revision.
char datchar(d) long d; Used by libdate.

printf(contro1,urgs. ...) STR control; The usual C print-to-terminal function. However, printing is
skipped if no terminal is present Note that not only is printing skipped, but formatting is skipped as
well, thus removing the rathex large overhead of the foxmaaing whenever the terminaldevice is discon-
nected.

dprintf(como1, urgs, ...) Same as printf, except no printing takes place if sysdebug = 0. All
the CRAMPS system programs call dprintf, so that system messages may be entirely turned off.

setcurrpic(n) uint n; Set the currpic field of the PROC array (qv. Appendix B) to n.
exit(i) stop. and print a stack trace ifiis non-zero.
abort(s) STR s: Stop, and print 'ABORT' and the specified(null-tenninated) message.

(for system use:)

writel(dwnmy. bger, count) ADDR ba#er; Write a message to the terminal.
readO(dummy, buffer, cowrr) ADDR buffec Read and echo a line firom the terminal.Return
number of chars INCLUDING NEWLINE. Interpret line editing characters char delete and line
delete.

readnl(dwnmy, buffer, count) ADDR buffer; Read from the teaminal to (and including) the next new-
line. The returned count includes the newline (as on Unix). This is the same function as read0 and
readline.

readline(dmy, bder, count) ADDR buffer; For compatibility with earlier forms.
changeproc(userid) uint userid; Change process identity (puserid) but sti l l on same processor.

(for system use:)

getusern(urerid) Get the user bit number wern (0 - 15) corresponding to the given userid (SSVA,
e.g.).

sleep(n) n is approx in milliseconds. The system administrator should set the count on the for loop such
that sleep(1) is approx 1 ms.

ulong wait-until(t) ulong t; Wait until the specikd time, then return current time. If we're past the
specified time return immediately.

ulong wait-to-multiple(t. &) ulong t; uint dr. Wait until time i s a multiple of dt offset from t, then
mum current time.

e < vbusd.c >>>
vbusd.c contains read, write.and their analogs.

autoreadfilename, buffer, count) STR filename; ADDR b ~ e r ,

autowrite(fr1ename. bgfer, count) STRflename; ADDR bMerr; These two functions perform their own
open and close.

readvd, buer, count) ADDR bgfer;
write@& bfler, c o w) ADDR byffec
readranfd, bwer, counf, o-#.ez) ADDR buffec long offset: Direct access read ('readrandom') - read
data starting offset bytes from the beginning of the file.
writeranvd, b@er, count. ofset) ADDR buffer, long ofser.

ADDR readpointer@lenume. wrongrcser) (formerly called readheader) STR filename; char wronguser;
Check that someone OTHER than wronguser has usedflenume then read and return pointer.

- 31 -

writepointer(frlenam, wronguser, pointer) (formerly called writeheader) STR filename; char
wronguser; ADDR pointer, Check that user other than wronguser has used previous pointer. Write new
pointer.

(for system use:)
isopen(p) struct filebuf *p; I s this file open to you, according to the system flags?

c<c vbusex >>>
main0 Always called at startup by pmain, to initialize the CRAMPS system.

<<e vbusf.c >>>
alloccm. freecm. and related programs. Note the distinct names:alloc and free are the C- library

routines that get space on the user’s own board for its intemal use; alloccm and freecm get space in
common memory, which is accessible to other users.
ADDR alloccm(size, uservec) uint size; USRBITS tcservec; Get a block of common memory, of the
requested size (bytes). uservec i s the bitwise OR of all userbits who will get use of this block.
freecmvp) ADDR p; Return a block of common memory to the freelist.freecm removes your userbit
from the uservec; only if you are the last user does the block actually get returned to the free l i s t

addusersvp, addvec. subvec) ADDR fp; USRBITS addvec, subvec; Update the bit vector of a block of
memory by adding the bits in addvec, and removing those in subvec (which may include the current
user itself).
freelinkvp. forward-oflser, buckword-ofisset) ADDR fp; NOT YET SUPPORTED. R e m a link of a
doubly-linked list to the free list, first fixing the links. fp points to the block (list element),
fonoord-o@et is the offset fiom fp of the pointer to the next element in the linked list, buckwmd-ofset
is the offset fromfp of the pointer to the previous element.

(calIed by system:)

initalloccmO Must be called by vmain.
freeinit(usern) Search list belonging to usern: free any blocks that have your usermask.

get-allocbo Get parmfile and generate an -ullocbuse amy. For now, just read itallin.
markallocbo Mark your own entry of the COMMON MEMORY copy of -ulbcbuse as being
initted.

openalloc(usern) If speed is needed, this can become its own streamlined version of open. For
now, use existing open (create entries in files m y) .

closallocva) Close alloclist for this user.

getallocb(fulln/t.ir p-header fulluddr; Return userbit number in whose allocation area fulluddr is
located.

STR allistname(usern) Rehlrn filename ofallocation lis t for usern.

<<e vbusg.c >>>
Debugging tools.

toolso A standalone program that may be entered directly from the monitor. Tools provides debugging
tools for understanding the current state of the user’s pgram.It takes care not to clobber the user’s
stack or register save area. The tools themselves are listed on and selected from a menu, 4.v. Figure 4.

menu0 prints the menu in Figure 4, for tools.

dispflagso Display the system’s current file flags.

displfl-afa(afrleb) Display one flag using the ulljiles array. Calledby dispflags.
displfl-faeleb) Display one flag using thefiles amy. Called by dispflags.

- 32 -

char *fstr(srrJlwn) Set up a filename string for printing.

dspfileso Display the user's 'files' array in human-readable form.

STR flagletter@ug) char fig; Set up flag for printing: return pointer to the string.
STR subrname(addr) ADDR &r: Return the subroutine name that the address uaifr lies in,as a null-
terminated string.

traceall0 Print stack trace of the currently " l ingprogram. This version is called by exit and abort,
and ends with a call to stop0.

trace0 Print stack trace of a stopped program. Uses saved-A6. in the register save area.
symtabservo Menu-driven server subprogram to 8ccess global-symbol-table information. including
symbolnames, addresses,and values, and to change those values.

struci symbol *getaddr(srring) STR string: Given a symbolstring, retum a pointer toits entry in the
symbol table. Return NULL if the symbol is not found.

ADDR getsubaddro Request subroutine name, and retum its address.
symtabmenuo Print menu for the symbol table server.
symeq(s, r) STR s, r, Return TRUE if null-terminated strings s and t am equal, FALSE if not.

ADDR ishexval(str) STR srr; If str i s a hex number in ASCII, terminated by 0 or '%' or ' ',return the
number in binary: otherwise return 0.
ishex(c) char c; Return TRUE if c i s a valid hex character, FALSE if not.

printsymtabo Print the entire symbol table.

printsymbol(sym) struct symbol *sym; Print one entry in the symbol table.
displaysymbol(addr, id@',end) ADDR uaifr, end, char inb471: For the symbol whose address i s &,
print its contents according to the printf specification %spec (in inba. Ask if the contents are to be
modified. andifso,modify them. (The argument end i s used only with the specification %u).

STR index@, s) char c; char *s; retum a pointer to the first occurrence of c in suing s; or NULL i f
none.

STR symbolstring(name) STR nume; Copy string and add terminating 0; note that subsequent calls
will overwrite the copy.

char htoi(s) STR s; Return value (656) of an ASCII string s taken to be one or two hex characters.

currstacko Print contents of stack, born current stack pointer back.
monitor0 Print 'Monitor' and exit DIRECTLY to monitor, do not save registers in save area.
debugflag0 Set debug flags in PROC array and in program.
dspPROCO Display current entries in this user's PROC structure in common memory.

subro Eliminate a subroutine by placing an rts (return from subroutine) right at the beginning; or
restore i t by restoring its initial op-cude. Works on Subroutines beginning with 'unlk a6'- this includes
all Intermetricscornpiled C programs, and most CRAMPS assembly programs. The subroutine will
prompt for the name of the target subroutine, and the function (eliminate or restore).

dispmem(addr, n) ADDR oddr. Display n bytes of memory.

char makeprint(c) char c; Mask out the parity bit of the character argument c. If c is a printing char-
acter, retumit;if c is non-printing, return '.' instead.
readnltest(fd, byf, cowrr) ADDR buf Read to newline, unless first character is ctrl-E or ctrl-T.

<<< vbusasmasm >>>
C-callable assembly-language subroutines run on VMEbus.

pmaino This is the starting point for allC programs. It i s never calledby a user program.
movblk(sourceaddr, destuddr, bytecount); ADDR source&. destuddr; uint bytecount; does a block
move (source and destination buffers must not overlap).

- 33 -

movblkfast(source&, dcsroddr, bytecount); ADDR sourceaddr, destaddr; uint byrecount; movblkfast
i s similar to movblk, but addresses MUST be even, and count MUST be a multiple of 4. There i s NO
checking. Count must beless than 65535.
movbigfast(sowceaddr. destaddr, bytecount); ADDR source&, destaddc dong bytecount; movbig-
fast is like movblkfast. except count is a long (up to 4 M). As in movblkfast, addresses MUST be
even, and count MUST be a multiple of 4. There is NO checking.

zeroblk(&sruddr, bytecount); ADDR destaddr. uint bytecow; zeroblk zeroes a block of memory.
lockexch(address, number, fype [, preVpag]); ADDR address; uint nwnber, prevp4g; loekexch performs
a locked exchange with a specified location:(Returns the number originally in specifiedloc)type1 for
byte, r y p 2 for word. rype=4 for 'initexchange' (calledto open a file during initialization) puts in
userid IF flag was previously not open (note difference from openexch), and restores flag if 'INUSE'.
ope4 for 'close-exchange' (calledduring closing of 6le). This function was very useful on the 8086XS
processor, which had locked (uninmptible) exchange capability. On the 680x0, it i s easily replaced by
peeks and pokes.

openexch(address); ADDR address; This is the subroutine that actually performs the open, on the flag
at address. If the flag is already OPEN, retum(FILEBUSY). Otherwise open it using a TAS (test-and-
set), and put userid next to flag. In either case,update user's files.previous-user.

peek(oddress); ADDR address; retums(longword); Fetches the longword at location address. address
must be even (except 68020).
peekb(uddress); ADDR d r e s s ; returns(byte); Fetches the byte at location address. Note that peek
cannot be slipped in in place of peekb. since the desired byte is mumed at the other end of the long-
word r e m register.

pokel(address. longword); ADDR address; long longword; Stores a longword at location address.
address must be even (exiept 68020).
pokew(dress, word); ADDR address; uint word; Stores a word at location address. address must be
even (except 68020).
pokeb(address. byte); ADDR address; char byte; Stores a byte at location address.

regpeek(register); int register. retums(l0ng); Returns contents of register (0-7 gets d0-d7; 8-15 gets aO-
an.
poke(a&iress. longword); ADDR address; long longword; Same as pokel, for compatibility with exist-
ing programs.

systimeo returns(l0ngword). Returns system Lime.
ha l i ve0 returns system timflong). Sets user time to systime to show SYS that this process is still
alive.

stop0 stop is the simplest way to exit the program when something goes wrong. without doing a return
to noplace.
getchar0 recunrs(char). VO primitive for reading from the mind. Actually returns an int with high-
order byte 0. ("he earlier name getcha is also supported.) Control-C will cause the process to stop (by
calling stop) as soon as it is read in, i.e. at the next getcbar, putchar, or ifchar).
putchar(ch0r); VO primitive for writing to the terminal. ("he earlier name putcha is also supported.)
Control-S and control -Q may be used during output to turn transmission off and back on,respectively.
m e program will block - puse - during this time.) Control-C will cause the process to stop (by cal-
ling stop) as soon as it is read in,i.e. at the next getchar, putchar, ar ifchar).
getcho retums(char). getch i s like getchar, but does not echo the character to the terminal.
ifchar0 retums(char). Returns 0 if no character is waiting to be read from the terminal. Otherwise,
retums the character but doesn't 'use it up': the next call to getchar wil l return the same character.
Normally used to see whether a character is waiting, if you don't want to block (hang); getchar will
block if there i s no character (as in Unix).

-34-

testcrto testcrt i s a subroutine to test if a device (presumably a CRT) is hooked up to the UART port.
Retums nonzero if a device i s there, 0 if not.

checkstack0 Checks the current stack pointer to see if the stack i s infringing on program space. If less
than 4k bytes remain, the program aborts. This number (4k) may be changed by changing the value of
the symbol STACK-RESERVE in vbusasmasm.

For SYS process only (and not cwrently implemented):
incrtimero Intenupt service routine to increment system clock.
initintro Called a! startup to initialize intempt chip (and sysclock far SUP).
resetm(n) Reset the board in slot n (n = 0, 15).
initscope0Initializesthe parallel output ports for use by onscope and offscope.

onscope(urg) Sets a specified bit of the output ports.
offscope(urg) Resets a specified bit. These three routines are used to toggle output bits at specified
points in a program, so the program's progress can be monitored on an oscilloscope.

ccc vbussup.c >>>

functions that only SUP uses. (including restart). I t is not currently implemented.

resetall0 Reset and restart all boards (operator can issue G xxxx).

restart(id) Reset and restart board with userid id (userid = 'ALL' works recursively).

retonly(id)

This is kept as a separate source file and linked only with SUP. vbussupx contains GRMPS

(for system use:)

getslot(id, PROCud) ADDR *PROCad, Return slot number and PROC structure base address of
the given id.

< e scbedu1er.c >>>

Most of these functions can only be called by the scheduler or by the system itself.
This file and the next contain the primitives for running multiple tasks on a single processor.

(only for use in scheduler:)

scheduler0 - as the name implies. this function acts as the main program and calls the various tasks
according to the algorithm programmed by the system administrator. I t runs in privileged mode. It i s
calledat the end of main, and should never return.
spawn(process -sturt, n) ADDR process-sturt; - Anach conrext[n] to the process which starts at
process-start, and start it,returning at the end of that process's m a i n (i.e. go through user's initializa-
tion).

c<< scbedasm >>>
relinquish0 - issue a trupIto voluntarily mum control to the scheduler. This i s the only usercaUable
multi-tasking function.

scbedinito - initialize the interrupt vectors for the scheduler clock a& trupI,etc.

activate(nextconrext, time) struct context *nexrcontext; - activate the task described in the indicated
contexf slot. If time is nonzero, set scheduler clock to interrupt task after time msec.

start-scheduler-clock(time) - set scheduler clock to intempt in time msec.

(only for use in scheduler:)

(for system use:)

schedisr - interrupt service routine for trap 1 command. Save context of current task and restore
context of scheduler. Return to scheduler.

- 35 -

shed-clock-isr - interrupt service routine for scheduler clock. Save context of current task and
restore context of scheduler. Return to scheduler.

- 36 -

Appendix D - Local Environment - N B S
Currently, the development environment at N B S consists of two Dual Systems computers (sight

and vision), connected to a VME-based system using a sexial download link. (The speed of download-
ing will be greatly increased by using a parallel interface between the Duals and the VME bus, which i s
expected shortly). Programs are developed in C, compiled on the Duals using the Intermetrics C cross -
compiler, and linked with the CRAMPS library. Only the C language and 6800 assembly language are
currently supported. Substantial effort would be required to support other environments and languages.

The choice of crosscompiler fixes Cettain parameters. such as the lengths of variables. Thus, for
the Intermeuics compiler, 8 char in the target system i s 8 bits long. and both signed and unsigned ver-
sions may be used. short integers are also 8 bits long. A regular int i s 16 bits long, and may also be
signed or unsigned. long integers are 32 bits in length, as are all pointers. The extra codes used by the
68020 and the 68881 coprocessor are not yet supported by the Intermetrics compiler, but should be in
the near future.

The library containing CRAMPS is localedin the directory /u/vZib on both sight and vision. The
source programs are in /u/vZib/vbus, and are called vbusa.c, through vbusg.c, with assembly language
subroutines in vbusasmasm. The current #include files are in ldvlib. Some of these are discussed
further in the Administrators Guide.

To compile a C program using the Intermenics crosscompiler. type
ccv frlel .e file2.c ...

Assembly-language programs work much the same, except using 8smv instead of ccv. In this case also
the extension .asm i s optional:

ccv and asmv both create an object file wilh suffix .ol. The object files then have to be linked together
along with the CRAMPS library using U t

llf stands for li'nk,locate,and format. I t leaves its output ready for downloading in a .dn file, in
GRAMPS .dn fonnat. ccv, ismv, and Uf are in the directory /u/x, which should be included in the
user's PATH environment variable (in h i s .login or .profile file, as applicable).

asmv file3

Ilf file1 file2 Ne3 ...

- 37 -

Appendix E - Local Environment - Philips

Currently, the development environment 8t Philips consists of a Sun workstation (jay). connected
to a VME-based system using a serial downloader. Programs are developed in C, compiled using the
Intermeuics C cross-compiler, and linked with the CRAMPS library. I t i s expected that the download
capability wil l be improved, either by using a parallel interface to the VME bus. or by direct memory
transfer.

The choice of cross-compiler againhes certain parameters; see Appendix D above.

The source code and library containing CRAMPS is located in the directory /wllocal/iruerc/glib
on jay. The source programs are called vbusa.c, through vbusgx, with assembly support in
vbusasmasm, pmain.68k. and mmu.68k. Those with strong constitutions might want to examine some
of these files.The corresponding #include files are in /urr/locall~rerc/include. Some of these are dis -
cussed in the Adminislrawrs Guide.

To compile a C program, or to assemble an assembly-language program, using the Intermemcs
tools type

ic68 -G 4 namefrle1.c file2.c ...
where the -G flag includes the CRAMPS library, the -0 flag renames the output to m e , and frlel.c,
frle2.c. ... are file names. Assembly programs can also appear in the command line. and will be assem-
bled and linked. A manual page will be forthcoming on this command. ic68 is in the directory
/usr/local/interc/bin, which should be included in the user's PATH environment variable (in his .login
or .profile file, as appropriate).

The following programs are specific to the Philips implementation of CRAMPS. Similar programs
may be necessary for each system, but wil l in general be hardware -specific.

cc< mmu.68k >>>

I t also currently initializes some of the "magic" numbers and locations.
T h i s assembly -language program sets up the memory mapping in the memory-management unit.

ccc mkversion and versi0n.c >>>
In order to establish the date of last update of the CRAMPS system, a system date function i s

included in the library, and printed out on startup of each process. mkversion creates a C program in
the file versionx, which is compiled and added to the library automatically with each use of candl or
aandl.

- 38 -

REFERENCES

[l]Mansbach. Peter. Overview of the 'CRAMPS' Multiprocessor Operating System, (to be publ.), 1988.

[2] Mansbach, Peter. and Shneier, Michael, The CRAMPS Operating System: Adminisnator's Guide,
National Bureau of Standards, Gaithersburg, MD 20899 (to be pdl.), 1988.

BS-114A (R E V . 2 J C I

U.S. DEPT. O F C O W . 1. PUBLICATlON OR 2. Performing Organ. Report No4 3. Publication Date
REPORT NO.

BIBLlOGRAPHIC DATA
SHEET (See instructions) NBSIR 88-3778 SEPTEMBER 1988

1. TITLE AND SUBTITLE

The GRAMPS Operating System: User 's Guide

5. AUTHOR(S)

Pe te r Mansbach and Michael Shneier

5. PERFORMING ORGANIZATION (Ifjoint or other than NBS. see instructions) 1. Contr8cr/Grant No.

NATIONAL BUREAU OF S M N D A R D S
US. DEPARTMENT OF COMMERCE 8. Type of Roport & Period Covered

GAITHERSBURG, MD 20899

U.S. DEPARTMENT OF COMMERCE
Nat ional Bureau o f Standards
Center f o r Manufacturing Engineer ing
Robot Systems D i v i s i o n
Gaithersburp. MD 20899

D. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

IO. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185. FlPS Software Summary. i s attached.

,l.ABSTRACT (A 200-word or less factual summary o f most significant information. Ifdocument includes a Significant
bibliography or literature survey, mention i t here)

This guide descr ibes t h e G W S r e a l - t i m e mul t iprocessor
operat ing system from an app l ica t ions viewpoint. It presents the
in format ion needed t o use GRAMPS i n implement ing d is t r i bu ted
processing app l i ca t ions . Add i t i ona l in fo rmat ion needed by an
admin is t ra to r t o s e t up and main ta in a s p e c i f i c app l ica t ion
appears i n t h e Admin is t ra to r ' s Guide.

12. KEY WORDS (SIX to twe lve entries; alphabettcal order; capitalrze only proper names; and separate key words by semrcolons)
asynchronous communication; communications protocol; funct ional ly - div ided processes;
G W S ; mult i - processor; multiprocessing; mult iprocessor; operat ing systems;
rea l - t ime; robot vision; v is ion

13. AVAILABILI lY 14. NO. OF
PRINTED PAGES

Unltmltcd

0 For Offtclal Dtstrlbutton. Do Not Release to NTIS
0Order From SuDertntendent of Documents. U.S. Government Printtn; Offlce, Washtntton. 0.c.

42

20402. 15. Prtce

EOrder From Nattonal Tcchnlcal Inforrnaclon Scrvtce (NTIS). Sprtngfleld. VA. 22161 $11.95

